第二百四十四章 柯西主值(微积分) (第1/2页)
微看书 www.vkss.cc,最快更新数学心!
柯西之旅,数学家中一说到柯西,就有一种枯燥的感觉铺面而来。
总以为柯西喜欢去规定一些东西,以严谨着称。
其实这对柯西很冤枉,因为柯西其实恰恰是一个喜欢有各种创造的人。
他可以在数学中很多不同的方面做出各种各样让人意想不到的事情,这样的数学家正是一个让人兴奋的数学家。
因为他有华丽的思维,这是最吸引人的一面。
柯西最近就开始考虑,如何对一些不正常的函数进行积分了。
一般的积分的函数,往往都是连续可导的情况,对于不连续的函数,理所应当被归类到不可以积分的那个范围。
而柯西认为,不连续一些函数也是可以求面积,甚至是体积的。
在写法上直接那样写就行,倒也顺当,但是会看起来不合法,但是真的不合法吗?
这个从直觉上可以感知出来。
比如想函数y=1\/x*x这样的函数,在x=0是发散的。
柯西使劲看着这个函数,心中中感觉,它下包围的面积大小是可以知道的,因为这是收敛的,不是发散的。
如果在数值上是收敛的,那不就可以去认为面积不是无穷大了吗?那不就是有特定面积的?
(本章未完,请点击下一页继续阅读)