第二百三十五章 柯西黎曼方程(复变函数) (第1/2页)
微看书 www.vkss.cc,最快更新数学心!
柯西的办公室,也是他工作的地方。
满屋子堆满了信件和纸张。
有论文,草稿,还有外面的人给自己的信件。
论文有自己的,有学生的,还有收集的同行的。
草稿有计算的,设计的,画图的,已经用完的和用到半中间的。
信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。
柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。
他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。
柯西开始研究关于复数坐标系中的微积分。
如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。
严格的柯西必须要弄清楚其中微积分的条件。
在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。
柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。
这也叫柯西条件。
(本章未完,请点击下一页继续阅读)