第六百六十九章 Frankl的并封闭集合猜想 (第1/2页)
微看书 www.vkss.cc,最快更新数学心!
对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。
我们来解读一下这个猜想说的啥。
首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。
例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}
至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。
当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:
在这些集族中,有一类特殊的集族对并运算封闭。
对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。
以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}
无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。
所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。
值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。
它于1979年被一个叫péter Frankl的数学家提出,所以也一度被叫做Frankl猜想。
看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。
达特茅斯学院数学教授peter winkler曾经在1987年就这个猜想给出尖锐的评价:
并封闭集合猜想确实很有名,除了它的起源和它的答案。
为了解决这个问题,数学家们也已经尝试过不少方法。
例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。
像是将它和图论中的二分图(bipartite Graph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。
又或是给其中的元素加以限制,再加以证明……
bUt,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。
来自哥伦比亚大学的助理教授will Sawin对此评价称:
它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。
然而,如今却没有任何一个证明能真正搞定它。
问题就这样进度缓慢,直到2022年秋天,谷歌研究员Justin Gilmer借着朋友结婚的契机,回到了罗格斯大学校园。
(本章未完,请点击下一页继续阅读)