第五百五十章 莱维偏序关系(集合论) (第1/2页)
微看书 www.vkss.cc,最快更新数学心!
1905年,保罗莱维开始着手研究关于集合论的一些问题。
其中一个重要问题,是关于排序的。
集合论中有特性是无序性。
所以研究很多数域的时候,关于顺序的问题也变得重要起来。
其中最为重要的是哪些可以排序,哪些不可以排序。
莱维的老师和顾问为雅克阿达马。
他指导莱维做这方面的研究。
莱维说:“很多数域都可以正常排序,称之为全序。而很多数域不能有全序,那也不能贸然看成无序,也要研究偏序性。”
自然数的集合配备了它的自然次序(小于等于关系)。这个偏序是全序。
整数的集合配备了它的自然次序。这个偏序是全序。
自然数的集合的有限子集{1, 2,...,n}。这个偏序是全序。
自然数的集合配备了整除关系。
给定集合的子集的集合(它的幂集)按包含排序。
(本章未完,请点击下一页继续阅读)