第四百九十九章 KAM定理(非线性力学) (第2/2页)
moser说:“不可积的哈密顿系统又是什么样子?”
阿诺德说:“直到现在也不完全清楚,也许永远也搞不清。但是由已知的东西出发探索未知的方法提醒我们应该先去了解充分接近可积的系统是什么样子。”
moser说:“我们现在准备试图证明这个定理。”
阿诺德说:“有什么好的办法码?”
moser说:“用牛顿迭代的办法了。就是找一系列的典则变换,不破坏哈密顿方程的式,一步步地变换近可积的系统使之越来越靠近一个可积系统,只要对参数的大部分点能做到就行。由于在迭代过程中会出现所谓的“小分母”,用通常的牛顿迭代法无法保证最终无穷多步变换的复合收敛,但利用改进的牛顿迭代方法克服了小分母带来的麻烦,从而完成了定理的证明。”
阿诺德说:“这个办法不错。”
moser说:“Sigel也对这个工作感兴趣,他在考虑圆周映射的线性化时,也曾提出过类似的证明思想,我在降低该理论对可微性的要求上又作出了一些重要的工作。”后来,John Nash 在他证明有关黎曼嵌入的论文中,也用到了类似的迭代方法(当然是独立完成,甚至可能早于moser),于是,后人又把他们的证明方法叫做 Nash-moser 迭代。
阿诺德说:“曾经的遍历性假设是猜测:通有的哈密顿系统,相流是遍历的。如果按照我的理论,遍历性假设不攻自破?由于可积系统不是通有的系统,一般的系统都是不可积的,因此由相流不遍历的可积系统并不能否定遍历性假设,但是我们知道近可积系统却是通有的。如果我们考虑 4 维的相空间,其等能面是三维的,如果该近可积的系统有不变二维环面存在,则此环面必将能量面的其余部分分割为不连通的两块,相流不可能从环面一边跑道另一边,所以也就不会有何遍历性可言。”
moser笑说:“不知道当年 Fermi 是怎么证明了遍历性假设的。不过据说他开密码锁也是一把好手。”Fermi当年的工作恰恰发现了不遍历性。说的是他搞了一批耦合谐振子,原来觉得能量可以自由的在自由度之间流动,最终达到玻尔兹曼分布。结果后来发现根据初始条件不同,能量卡在若干个自由度之间来回变,永远不会达到玻尔兹曼分布。验证了动力系统中,遍历性假设不是先天靠谱的。
阿诺德说:“我在想,共振环面破裂后到底会怎样?”
moser说:“这个问题仍没有完全解决。目前大家都比较清楚的是:一般会有较低维数的环面存在,分椭圆环面,双曲环面等,,也就是说仍然还有比较规则的相曲线;同时还会有一些很不规则的轨线,有人称之为 mather 集;甚至还有所谓的“马蹄”。”
KAm 理论,不仅是 Kolmogorov 定理本身,还包括为证明该定理所发展的一系列方法,该理论诞生至今虽已近半个世纪,但仍在不断的发展和完善中。它所应用的范围也不仅限于哈密顿系统,对于可逆系统,保体积映射,以及无穷维哈密顿系统(包括一些特殊的偏微分方程)都发展出了相应的 KAm 理论。甚至可以说,凡是有小分母出现的地方,就是 KAm 大显身手之处。