第四百九十四章 柯尔莫哥洛夫的随机过程论(概率与统计) (第2/2页)
20世纪20年代,在概率论方面他还作了关于强大数律、重对数律的基本工作:他和辛钦成功地找到了具有相互独立的随机变量的项的级数收敛的必要充分条件;
他成功地证明了大数法则的必要充分要件;证明了在项上加上极宽的条件时独立随机变量的重对数法则;
得到了在独立同分布项情形下强大数法则的必要充分条件.
20世纪 30年代,他建立了马尔可夫过程的两个基本方程.
他的卓越论文《概率论的解析方法》为现代马尔可夫随机过程论和揭示概率论与常微分方程及二阶偏微分方程的深刻联系奠定了基础.
他还创立了具有可数状态的马尔可夫链理论.
他找到了连续的分布函数与它的经验分布函数之差的上确界的极限分布,这个结果是非参数统计中分布函数拟合检验的理论依据,成为统计学的核心之一.
1949年,格涅坚科和柯尔莫哥洛夫发表了专着《相互独立随机变数之和的极限分布》,这是一部论述20世纪30年代以来,柯尔莫哥洛夫和辛钦等以无穷可分律和稳定律为中心的的独立随机变量和的弱极限理论的总结性着作.
在20世纪30—40年代之交,柯尔莫哥洛夫建立了希尔伯特空间几何与平稳随机过程和平稳随机增量过程的一系列问题之间的联系.给出了这两种过程的谱表示,完整地研究了它们的结构以及平稳随机过程的的内插与外推问题等.
他的平稳过程的结果创造了一个全新的随机过程论的分支,在科学和技术上有广泛的应用;而他的关于平稳增量随机过程的理论对于各向同性湍流的研究有深刻的影响.