第四百五十二章 玻尔诺伊格鲍尔概周期函数(函数论) (第1/2页)
微看书 www.vkss.cc,最快更新数学心!
玻尔-诺伊格鲍尔理论阐明常系数线性微分方程有界解为概周期解的重要理论.玻尔(bohr,h.)最早指出:概周期函数f(t)的积分是概周期函数的充分必要条件是,F(t)对一切t∈R为有界.这就解决了最简单的一阶概周期微分方程dx\/dt=f(t)是否存在概周期解的问题.以此为基础,对于一阶线性常系数概周期方程以及一般n维非齐次线性常系数概周期微分方程dx\/dt=Ax+f(t)。
其中A为nxn常量矩阵,f(t)为概周期n维向量函数,论证它们的有界解即概周期解的理论,称为玻尔-诺伊格鲍尔理论.
哈那德·波尔说:“你为什么想要编撰古代精密科学的研究?是不想研究现代的吗?”
诺伊格鲍尔对波尔说:“正相反,我致力于做古代科学研究,正是因为现在的科学就是从古代而来,看过古代科学之后,可以温故而知新,更加熟练的了解现在的科学。”
波尔说:“那你还会研究现在的科学吗?”
诺伊格鲍尔说:“是的,其实我知道这些东西增加了我对文献学的理解。”
波尔说:“哪些是实用的?”
诺伊格鲍尔说:“我们需要把没用的文献,一脚踢开。大量没用的,占用时间的,或者是重复的文献是在占用时间,连一个字都不能多留下。”
波尔说:“然后只读一些新的,最新鲜的,这样可以保证让自己一直快速有效的得到新知识。”
诺伊格鲍尔说:“没错,这也是读文献的真正目的。随着文献的增加,我们肯定需要更多的知识充实自己,然后让自己做出更多有效的贡献。”
随后两个人的交谈转向了数学问题。
波尔说:“前一段时间考虑的系数线性微分方程有界解为概周期解的问题,考虑过了吗?”
(本章未完,请点击下一页继续阅读)