第三百三十一章 李代数(群论) (第2/2页)
李说:“很多概念,有子代数、理想、正规群等等。”
若尔当突然说:“在你心中,有些看似等于0的东西,并不见得真的是0吧。”
李知道若尔当说的是那些基的矩阵表示,用行列式直接解,那就等于零。
李说:“或许这个代数的神秘之处恰恰在此,我的矩阵的斜对角化简完后,是都等于0的,按理说就是0 了吧。但是这些东西相互做一些计算,那也能算出很多花样来,而且你也不能说那就不对吧。”
若尔当笑道:“矩阵里只要有一个东西不为零,那就不是严格的零,对不对吧,你就是这个意思吧。你心里早就这么想了吧。”
李说:“没错,我就是这个意思了,我摊牌了。”
若尔当说:“大胆,你这个神经病,那都是虚妄的,行列式算出来是0的,那就是0.你居然闲的无聊说它们不是0.还有拿它们计算。你对数学不负责任,你是在玩耍。”
李说:“你敢对上帝发誓吗?矩阵里只有一个地方不是0,你必须按0来算?”
若尔当笑道:“跟你开玩笑呢,我太支持你了,你的非结合代数当然以此为根基。我要给你点赞。”
最初是由19世纪挪威数学家,经过一个世纪,特别是19世纪末和20世纪的前叶,由于威廉·基灵、嘉当、外尔等人卓有成效的工作,李代数本身的理论才得到完善,并且有了很大的发展。
李代数是挪威数学家索菲斯·李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。
在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。
可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。
李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。
法国数学家嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。
他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,嘉当还构造出这些例外代数。
嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。
到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。
李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。