第一百五十一章 达朗贝尔级数判别法(级数) (第2/2页)
达朗贝尔说:“在研究级数。”
勒皮纳斯说:“将数列的项依次用加号连接起来的函数吗?你要研究它的什么?”
达朗贝尔说:“理所应当是是发散和收敛。”
勒皮纳斯说:“你肯定喜欢收敛的,发散的没有什么可以研究的。”
达朗贝尔说:“当然了,发散的都是无穷大。无穷大的东西不都是一样的吗?”
这激发勒皮纳斯数学兴趣,里皮纳斯笑说:“或许也不一样,因为不同级数的曲线不是明显不同的吗?不能因为发散级数都是无穷大,而去说这些无穷大都一样。这是不是会很唐突。”
达朗贝尔对这个沙龙的女主人有好感,并且视为知己,就是这个原因。一个有钱的女流,居然也会有深邃的数学思想,虽然她的思想是受到自己启发的,但是却也有自己的新观点。
达朗贝尔笑着说:“数学家此刻最大的毛病,就是无法轻易驯服无穷大。对于无穷大的观点是,它是个无底洞,把任何责任推给它就可以了。”
两个人相视而笑。
勒皮纳斯继续说:“那对于收敛的级数,你是如何区分的?”
达朗贝尔说:“我这个级数判别法,不论说在什么情况下,在正数的级数里,如果后一个数除以前一个数这样的通向公式,在趋于无穷的情况下,小于1是收敛,大于1是发射,等于1时发散和收敛都有可能。”
勒皮纳斯说:“原来你是找到了收敛级数的通行证。”